切线法求最值
切线法用于易猜到等号成立的条件的不等式问题
步骤
-
假设函数$f(x)$,并求出其导数$f^{’}(x)$。代入等号成立条件.
-
得出该点的切线斜率,并列出点斜式,代入该点.
-
按照题目的符号填入并累加即可.
例题
- 已知$a,\ b,\ c\in R^+$,且$a+b+c = 3$,求证:$\dfrac{1}{a^2+a}+\dfrac{1}{b^2+b}+\dfrac{1}{c^2+c}\geq \dfrac{3}{2}$.
$\textbf{证明}$:设$f(x) = \dfrac{1}{x^2+x}$,则$f^{’}(x) = -\dfrac{2x+1}{\left(x^2+x\right)^2}$,
不难猜到等号成立条件为$a=b=c=1$,代入$x=1$得$f^{’}(1)=-\dfrac{3}{4}$.
设该点的切线方程为$y-y_0 = -\dfrac{3}{4}\left(x-x_0\right)$,代入$x_0=1,\ y_0=\dfrac{1}{2}$,得$y=-\dfrac{3}{4}x+\dfrac{5}{4}$.
由此得出$\dfrac{1}{x^2+x}\geq -\dfrac{3}{4}x+\dfrac{5}{4}$.
$\therefore \sum_{cyc} \dfrac{1}{a^2+a} \geq -\dfrac{3}{4}\sum_{cyc}a+\dfrac{15}{4}=\dfrac{3}{2}$.
习题
- 已知$a,\ b,\ c\in R^+$,且$abc=1$,求证:$\dfrac{1}{a^2+a}+\dfrac{1}{b^2+b}+\dfrac{1}{c^2+c}\geq \dfrac{3}{2}$.
$\textbf{证明}$:$LHS = \dfrac{\left(bc\right)^2}{1+bc}+\dfrac{\left(ac\right)^2}{1+ac}+\dfrac{\left(ab\right)^2}{1+ab}$,即证$\sum_{cyc} \dfrac{\left(ab\right)^2}{1+ab} \geq \dfrac{3}{2}$.
设$f(x) = \dfrac{x^2}{x+1}$,则$f^{’}(x) = \dfrac{x^2+2x}{\left(x+1\right)^2}=1-\dfrac{1}{\left(x+1\right)^2}$,
不难猜到等号成立条件为$ab=bc=ac=1$,代入$x=1$得$f^{’}(1)=\dfrac{3}{4}$.
设该点的切线方程为$y-y_0 = \dfrac{3}{4}\left(x-x_0\right)$,代入$x_0=1,\ y_0=\dfrac{1}{2}$,得$y=\dfrac{3}{4}x-\dfrac{1}{4}$.
由此得出$\dfrac{x^2}{x+1}\geq \dfrac{3}{4}x-\dfrac{1}{4}$.
$\therefore \sum_{cyc} \dfrac{\left(ab\right)^2}{1+ab} \geq \dfrac{3}{4}\sum_{cyc}bc-\dfrac{3}{4}\geq \dfrac{3}{4}\cdot3\sqrt[3]{a^2b^2c^2} -\dfrac{3}{4}=\dfrac{3}{2}$.